首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110665篇
  免费   10733篇
  国内免费   6490篇
电工技术   8060篇
技术理论   2篇
综合类   7363篇
化学工业   26754篇
金属工艺   8042篇
机械仪表   8045篇
建筑科学   3034篇
矿业工程   1503篇
能源动力   3553篇
轻工业   6563篇
水利工程   649篇
石油天然气   4436篇
武器工业   986篇
无线电   12254篇
一般工业技术   16696篇
冶金工业   2569篇
原子能技术   1166篇
自动化技术   16213篇
  2024年   188篇
  2023年   1514篇
  2022年   1884篇
  2021年   3177篇
  2020年   2871篇
  2019年   2934篇
  2018年   2845篇
  2017年   3518篇
  2016年   3933篇
  2015年   4375篇
  2014年   5547篇
  2013年   6419篇
  2012年   6650篇
  2011年   7784篇
  2010年   6496篇
  2009年   7386篇
  2008年   6943篇
  2007年   7660篇
  2006年   7380篇
  2005年   6068篇
  2004年   5378篇
  2003年   4956篇
  2002年   4035篇
  2001年   3180篇
  2000年   2703篇
  1999年   2135篇
  1998年   1545篇
  1997年   1276篇
  1996年   1209篇
  1995年   1213篇
  1994年   1040篇
  1993年   870篇
  1992年   704篇
  1991年   460篇
  1990年   342篇
  1989年   312篇
  1988年   181篇
  1987年   119篇
  1986年   116篇
  1985年   89篇
  1984年   76篇
  1983年   51篇
  1982年   54篇
  1981年   57篇
  1980年   28篇
  1979年   23篇
  1978年   24篇
  1977年   20篇
  1976年   27篇
  1951年   20篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
22.
《Ceramics International》2021,47(22):31457-31469
The present work investigated the effects of thermal cycles in air on the tensile properties of a two-dimensional carbon fibre reinforced silicon carbide composite (2D C/SiC) prepared by chemical vapour infiltration at different heating rates. The composite was exposed to different cycles of thermal shock between 20 °C and 1300 °C in air. The damage mechanisms were investigated by AE online monitoring and fractured morphology offline analysis. The tensile strength of 2D-C/SiC decreases with increasing thermal cycles. However, the modulus only decrease within 40 cycles. Due to oxidation, with the decrease in heating rate, the residual properties of the material decrease more obviously. Meanwhile, the results of AE online monitoring and fracture analysis show that the matrix damage is more serious at higher heating rate and that more delamination occours in tensile fractures. The above results indicate that for the thermal shock of 2D C/SiC composites in air, oxidative damage plays a key role in the residual properties.  相似文献   
23.
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.  相似文献   
24.
An easy albeit quite effective deionization suspension treatment was adopted to alleviate the detrimental effects related to the hydrolysis of Y2O3 in an aqueous medium. Fabrication of highly transparent Y2O3 ceramics with a fine grain size via air pre-sintering and post–hot isostatic pressing (HIP) treatment without using any sintering additive was achieved using the treated suspensions. The hydrolysis issue of Y2O3 powder in an aqueous medium was effectively alleviated by using deionization treatment, and a well-dispersed suspension with a low concentration of dissolved Y3+ species was obtained. The dispersed suspensions were consolidated by the centrifugal casting method, and the green bodies derived from the suspension of 35.0 vol% solid loading showed an improved homogeneity with a relative density of 52.1%. Fully dense Y2O3 transparent ceramic with high transparency was obtained by pre-sintering consolidated green compacts at a low temperature of 1400°C for 16 h in air followed by a post-HIP treatment at 1550°C for 2 h under 200 MPa pressure. The sample had a fine average grain size of 690 nm. The in-line transmittance of the sample reached 83.3% and 81.8% at 1100 nm and 800 nm, respectively, very close to the theoretical values of Y2O3.  相似文献   
25.
《Ceramics International》2022,48(4):5338-5351
This study aimed to investigate experimentally the repeated low-velocity impact behaviors of SiC reinforced aluminum 6061 metal-matrix composites for different volume fractions and energy levels. In addition, the hardness variations were measured by the Vickers hardness tests from the impacted and impact-free cross-sections of the particle reinforced metal-matrix composites. Low-velocity impact tests were applied to composite samples manufactured by powder metallurgy (in 10, 20, and 30% volume fractions) at two total energy levels (15 and 60 J as single) and in repetitions equal to the sum of these energy levels (5 + 5 + 5 and 20 + 20 + 20 J as repeated). As a result, in increasing the impact number for all volume fractions, the total contact time was shortened and the peak contact force increased, whereas both the permanent central deflection and the absorbed energies reduced. Hence, these variations obtained under repeated impacts (5 + 5 + 5 and 20 + 20 + 20 J) revealed that metal-matrix composites showed a tougher behavior with an increase in the impact numbers from 1st to 3rd, particularly because of the strain hardening effect. Furthermore, an increase in volume fraction from 10 to 30% resulted in an increase in the impact strength under all repeated and single impacts despite changing deformation and damage mechanisms due to increasing the strain hardening effect and particle fractures. The hardness was affected by the volume fraction and increased as the volume fraction increased in both the impacted and impact-free zones. The repeated impact increased the impacted zone hardness more than the single impact for all volume fractions. Additionally, the hardness of the impacted zone under 20 + 20 + 20 J repeated impact was measured as the highest value in the 30% volume fraction. Therefore, metal-matrix composites can behave harder with the strain hardening effect under repeated impacts.  相似文献   
26.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
27.
Fluorinated completely condensed polyhedral oligomeric silsesquioxanes (F-CC-POSSs) are widely utilized as surface modifiers for polymeric materials because of their polyhedral and fluorine-rich structures, which generate polymers with lower surface energies under molecular-level control. In contrast, their derivatives, fluorinated incompletely condensed or open-cage POSSs (F-IC-POSSs), have similarly intriguing structures, but their utilization for polymer synthesis remains undeveloped. Herein, fluorinated network polymers were prepared based on a 3,3,3-trifluoropropyl-substituted IC-POSSs via hydrosilylation polymerization with isobutyl- and phenyl-substituted IC-POSS under optimized conditions. In addition to their good thermal stability and tunable refractive indices, these polymers exhibited solution processability and their casting films showed excellent optical transparency, indicating their potential for constructing fluorinated polymers. Their utilization as surface modifiers was examined by addition to poly(methylmethacrylate) (PMMA) films. Intriguingly, modified PMMA films with 2.0 and 0.5 wt% addition showed similar hydrophobicity and surface energies to the films prepared with only fluorinated network polymers.  相似文献   
28.
HfC nanowires modified carbon fiber cloth laminated carbon/carbon (HfCnw-C/C) composites were fabricated by in situ growth of HfC nanowires on carbon cloths via catalytic CVD, followed with lamination of the cloths and densification by pyrolytic carbon (PyC). Morphologies, thermal conductivity, coefficient of thermal expansion (CTE), and ablation resistance of the composites were investigated. Due to the loading of HfC nanowires, the matrix PyC with low texture was obtained; the thermal conductivity of the composites in the Z direction was enhanced from 100℃ to 2500℃; CTE along the X–Y direction also decreased in the range of 2060 ℃ – 2500 ℃, which reaches the maximum of 24 % at 2500℃. Moreover, the 20s-ablation-resistance of HfCnw-C/C composites exhibits mass and linear ablation rates of 5.3 mg/s and 21.0 μm/s, which are 40 % and 37 % lower than those of pure C/C composites, respectively. Our work shows laminated HfCnw-C/C composites are a promising candidate for high-temperature applications.  相似文献   
29.
To quantitatively investigate the initial crystallization of zeolite beta synthesized by direct heating, the extent of the reaction was precisely evaluated by X-ray diffraction measurements and Rietveld structural refinement, and a kinetic analysis of crystallization was performed using the Avrami-Erofe'ev equation. The activation energy for crystallization was lower than that for hydrothermal synthesis. Reaction and synthesis time curves revealed that the initial zeolite beta crystallization consisted of three stages. The first was an induction period with nucleation by the generation of building units and the formation of an initial coordinated structure. The second stage was crystal growth by a diffusion-controlled reaction, and the third stage involved slowing down of crystallization by the limitation of dehydrocondensation. These stages could be analyzed by calculation of the rate constant and Avrami exponent for each stage.  相似文献   
30.
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号